A Hybrid Approach for Alarm Verification using Stream Processing, Machine Learning and Text Analytics
نویسندگان
چکیده
False alarms triggered by security sensors incur high costs for all parties involved. According to police reports, a large majority of alarms are false. Recent advances in machine learning can enable automatically classifying alarms. However, building a scalable alarm verification system is a challenge, since the system needs to: (1) process thousands of alarms in real-time, (2) classify false alarms with high accuracy and (3) perform historic data analysis to enable better insights into the results for human operators. This requires a mix of machine learning, stream and batch processing – technologies which are typically optimized independently. We combine all three into a single, real-world application. This paper describes the implementation and evaluation of an alarm verification system we developed jointly with Sitasys, the market leader in alarm transmission in central Europe. Our system can process around 30K alarms per second with a verification accuracy of above 90%.
منابع مشابه
A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملVerification of unemployment benefits’ claims using Classifier Combination method
Unemployment insurance is one of the most popular insurance types in the modern world. The Social Security Organization is responsible for checking the unemployment benefits of individuals supported by unemployment insurance. Hand-crafted evaluation of unemployment claims requires a big deal of time and money. Data mining and machine learning as two efficient tools for data analysis can assist ...
متن کاملA New Hybrid Meta-Heuristics Approach to Solve the Parallel Machine Scheduling Problem Considering Human Resiliency Engineering
This paper proposes a mixed integer programming model to solve a non-identical parallel machine (NIPM) scheduling with sequence-dependent set-up times and human resiliency engineering. The presented mathematical model is formulated to consider human factors including Learning, Teamwork and Awareness. Moreover, processing time of jobs are assumed to be non-deterministic and dependent to their st...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کامل